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5. Development of a cumulative human equivalent exposure concentration  

5.1	Overview

In most occupational studies of worker exposure to asbestos, cumulative exposure is expressed in units of f/cc-yrs, which is calculated as the product of average exposure concentration at work (f/cc) and the number of years at work.  Implicit in this calculation is the understanding that workers work 8 hours per day and 5 days per week.  To convert the cumulative exposure value for a worker to one that is applicable to an individual with continuous exposure, and to account for differences in breathing rate (10 m3 per 8 hr workday = 1.25 m3/hr in the occupational setting vs 20 m3/day = 0.8333 m3/hr in the non-workplace setting), the occupational cumulative exposure value is usually adjusted (multiplied) by the following factor (US EPA 1994, IRIS 2012):
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In the case of the Marysville cohort, a more complex adjustment is needed to convert from workplace exposure to continuous exposure because employees at the Marysville plant often worked extended work schedules, both in terms of hours per day and days per week, and these schedules depended on the time of year (season), due to seasonal variations in product demand.

5.2	Seasonal schedule adjustment factors 

Based on an understanding of plant operations, six exposure categories were identified that had a unique set of season-specific exposure parameters (hrs/day, days per season):

1. Trionizing (including track and track unload)

2. Plant maintenance

3. Central maintenance

4. Polyform

5. Background (office, research, pilot plant)

6. Background with extra time (warehouse, packaging)

For each worker, the date of any job change between these six categories was adjusted so the change occurred at the starting month for the nearest season. 

For each of these categories, a seasonal adjustment factor was calculated using the following general equation:

	

where:

	ET = exposure time at work (hrs/day)

ED = Number of days worked during the season

N = Number of days in the season

Department-specific and season-specific values of ET, ED and N are provided below, along with the corresponding seasonal adjustment factors.



Trionizing, plant maintenance, polyform, warehouse, and packaging

Spring  

Season = January 1 to May 31

N = 151.25 days (includes 0.25 days to account for leap years)

Work schedule = 7 days/week, 12 hrs/day, with New Years’ Day off

ED = 151.25 – 1 = 150.25

ET = 12 hrs/day

Seasonal adj. factor = (1.25)/(0.8333) * [12/24 * 150.25/151.25] = 0.7450

Summer

Season = June 1 to August 31

N = 92 days

Work schedule = 5 days/week, 8 hrs/day, with 2 week summer vacation

ED =  [(92-14)*5/7)] = 55.71 days

ET = 8 hours/day

Seasonal adj, factor = (1.25)/(0.8333) * [8/24 * 55.71/92] = 0.3028

Fall

Season = September 1 to December 31

N = 122 days

Work schedule = 5 days/week, 12 hrs/day plus 2 days/week, 8 hrs/day, with Christmas Day off

ED1 = 121 days * 5/7 = 86.43 days

ET1 = 12 hours/day

ED2 = 121 * 2/7 = 34.57 days

ET2 = 8 hours/day

Seasonal adj. factor = (1.25)/(20/24) * [12/24*86.43 + 8/24*34.57]/122 = 0.6730



Office, pilot plant, research, and central maintenance 

Spring

Season = January 1 to May 31

N = 151.25

Work schedule = 5 days/week, 8 hrs/day, with New Years’ Day off

ED = 150.25 days * 5/7 = 107.32 days

ET = 8 hours/day

Seasonal adj. factor = (1.25)/(20/24) * [8/24 * 107.32/151.25] = 0.3548

Summer

Season = June 1 to August 31

N = 92 days

Work schedule = 5 days/week, 8 hrs/day, with 2 week summer vacation

ED = (92 -14) * 5/7 = 55.71 days

ET = 8 hours/day

Seasonal adj. factor = (1.25)/(20/24) * [8/24 * 55.71/92] = 0.3028

Fall

Season = September 1 to December 31

N = 122 days

Work schedule = 5 days/week, 8 hrs/day, with Christmas Day off

ED = (122 – 1) * 5/7 = 86.43

ET1 = 8 hours/day

Season adj. factor = (1.25)/(20/24) * [8/24 * 86.43/122] = 0.3542



5.3 	Calculation of cumulative human equivalent exposure concentration

Given the department-specific seasonal adjustment factors, the cumulative human equivalent exposure concentration (CHEEC) for each worker is calculated as follows:



where Ci is the concentration in workplace air during season “i”, and the sum is calculated across each season that the worker is exposed. 

5.4 	Verification of the Calculations

To verify the accuracy of the CHEEC calculations, several quality control checks were conducted.  The distribution was evaluated by reviewing the mean, median, standard deviation, highest 10 values, and lowest 10 values.  Several workers were also randomly selected and their values hand-calculated to ensure all programming was correct. 




TECHNICAL MEMO



OSWER RECOMMENDED METHODS AND GUIDELINES FOR

PLANNING ASBESTOS DATA COLLECTION EFFORTS

AND UTILIZING THE DATA FOR RISK ASSESSMENT PURPOSES





1.0 INTRODUCTION



In many ways, the issues associated with sampling and analysis of asbestos in air are the same as for other analytes in other media.  However, there are a number of strategic and statistical issues that are unique to asbestos, and mastering these issues is key to planning sampling efforts and collecting reliable data for use in site characterization and risk assessment at asbestos-contaminated Superfund sites.



This technical memo summarizes information that may be useful when planning and performing studies of asbestos levels in air, and provides recommendations for how to properly interpret and utilize data that are collected.  This memo is intended for use by risk assessors and EPA Regional Project Managers (RPMs) who are responsible for planning and implementing remedial investigations and evaluating human health risk at asbestos sites.



2.0 BASICS OF ASBESTOS SAMPLING AND ANALYSIS



The concentration of asbestos in air is usually estimated by drawing a known volume of air through a filter and counting the number of asbestos fibers on the filter using some appropriate microscopic technique.  The concentration is then calculated as follows:



	C = Nt / Vt								[Eqn.  1]



where:



	C = Concentration of asbestos in the air drawn through the filter (f/cc)

	Nt = Total number of asbestos fibers on filter (f)

	Vt = Total volume of air drawn through filter (cc)



Counting fibers on the filter may be achieved using several different types of microscope, but EPA generally recommends using transmission electron microscopy (TEM) because this technique has the ability to clearly distinguish asbestos from non-asbestos particles, and to classify different types of asbestos.



In air sampling for asbestos, the filter that is used is usually about 25 mm in diameter, and has an effective filter area (the area of filter through which air can pass) of about 360-385 mm2, depending on the filter device.   The filter is usually made of mixed cellulose ester (MCE) and can have effective pore sizes ranging from 0.2 to 0.8 µm.  In most cases, samples of air are collected using pore sizes of 0.45 or 0.8 um to avoid excess backpressure on the filter.



After air is drawn through the filter, a wedge (usually about 1/4th) is cut from the filter, and this is placed on a glass slide.  This is referred to as “direct” preparation.  In some cases, the filter may be too heavily loaded with particulate matter to allow a reliable “direct” examinantion of the filter.  In such cases, the filter may be evaluated using an “indirect” preparation technique, where the material on the original (primary) filter is suspended in water, and a fraction of the water suspension is filtered through a new (secondary) filter.  



The wedge of filter (either primary or secondary) is collapsed by exposure to a solvent (e.g., acetone), and the surface of the collapsed filter is etched to help expose the asbestos fibers.  This collapsed and etched filter is then carbon-coated, and several pieces of the carbon-coated material are transferred onto small copper grids.  Each grid is about 3 mm in size (either round or square), and contains in the center a very fine copper mesh.  The copper grid bars (usually about 20 µm wide) are opaque, but the areas between the grid bars (the grid openings) are transparent.  The size of each grid opening is usually about 0.1 mm x 0.1 mm, corresponding to an area of about 0.01 mm2 (depending on manufacturer).  During analysis, a number of grid openings (selected at random) are examined in the TEM instrument, and the number of fibers observed in each grid opening is recorded.



The magnification used to examine each grid opening depends on the objectives of the analysis.  If the goal is to identify and characterize all asbestos fibers, the examination is usually performed at a relatively high magnification (about 20,000 X).  If the goal of the analysis is to quantify phase-contrast microscopy-equivalent (PCME) fibers only (> 5 um in length), then the analysis may be performed at somewhat lower magnification (e.g., 5,000 X).  This allows for more rapid (and usually less costly) examination of each grid opening.



The raw data from each analysis consists of the number of asbestos fibers observed and the number of grid opening examined.  From these data, the concentration of asbestos in the sample is calculated as follows:



	C 	= 	Nobs ∙ EFA / (GO ∙ Ago · Vt · 1000 · F )     				[Eqn.  2]



where:



	C 		=	asbestos concentration in air (f/cc)

	Nobs  	= 	Number of fibers observed in the analysis of the filter

	EFA 	= 	effective filter area (mm2)

	GO 	= 	number of grid openings examined

	Ago 	= 	area of one grid opening (mm2)

	Vt 		= 	total volume of air drawn through the filter (L)

	1000 	= 	conversion factor from L to cc

	F 		= 	fraction of the material on the primary filter applied to the secondary filter (if an indirect preparation was used).  If a direct preparation was used, F = 1.0



For convenience, Equation 2 is often written as:



	C = Nobs ∙ S								[Eqn. 3]



where S = Analytical sensitivity, which has units of 1/cc (cc-1).  The value of S is given by:



	S = EFA / (GO ∙ Ago · Vt · 1000 · F)  				[Eqn.  4]



Note that S is the inverse of the volume of air that passed through the area of filter analyzed:



	S = 1/Va



	Va = 1/S



where:



	Va 	= volume of air that passed through the area of filter analyzed (cc)

		= Vt ∙ 1000 · (GO ∙ Ago · F / EFA)



Consequently, we may also express concentration as follows:



	C = Nobs / Va							[Eqn.  5]





3.0 POISSON STATISTICS



If it were possible to actually examine the entire filter under the microscope, it would be possible to count exactly the total number of structures present on the filter.  Hence, the true concentration in the air passed through the filter would be known with certainty, and there would be no need to consider any type of statistics.  However, due to time and cost constraints, in a typical TEM analysis, only a tiny fraction of the filter is actually examined.  For example, if a total of 50 grid opening were examined, this would usually correspond to an area of about 0.5 mm2, which is only a little more than 0.1% of the total filter area.



This means that the number of fibers that are observed during any specific analysis of a filter is a random sample of the whole population of all fibers on the filter, and the sample observed in any one analysis may or may not be a good representation of the whole.  Unfortunately, this means we have to consider the statistical uncertainty in our results for that sample.



Perhaps the best way to understand the problem is to consider an example.  Assume we draw a volume of 200 L (200,000 cc) of air through a filter.  Assume the true concentration of asbestos in the air is 0.0030 f/cc.  Based on these assumptions, the total number of fibers on the filter is:



	Nt = 0.0030 f/cc ∙ 200,000 cc = 600 fibers



Assuming an EFA of 360 mm2, the fiber loading on the filter is:



	Loading = 600 fibers / 360 mm2 = 1.67 fibers/mm2



Assume we analyze a total of 25 grid openings, each with an area of 0.01 mm2.  Under these conditions, the expected count (often indicated by λ, the Greek letter lambda) of asbestos fibers is: 



	λ = 25 GO ∙ 0.01 mm2/GO ∙ 1.67 fibers/mm2 = 0.417 fibers







That is, if we analyze this filter several times by counting 25 grid openings each time, on average we would expect to see 0.417 fibers.   However, it is obvious that in any one specific analysis we will never see 0.417 fibers.  Rather, we will see some integer number (0, 1, 2, 3, etc.).  The relative probability of seeing any specified count “x” is given by the Poisson distribution[footnoteRef:1]: [1:   The Poisson function is available as a ‘built-in” function in Microsoft Excel.  For example, to find the probability of observing exactly 2 counts in an analysis where the expected average number of counts is 3.6, the syntax would be:  = POISSON(2,3.6,false).  To calculate the cumulative probability of seeing 2 or fewer (i.e., either 0, 1, or 2), enter “true” rather than “false” in the function.] 




	Probability of seeing a count of “x” = Poisson (x,λ)



The following table gives the Poisson distribution for this particular example (λ = 0.417 fibers):



		Count

		Probability



		0

		65.9%



		1

		27.5%



		2

		5.7%



		3

		0.8%



		4

		0.1%



		5

		0.01%







That is, if we count 25 grid openings selected at random, there is a 65.9% chance we will see zero fibers, a 27.5% chance we will see one fiber, a 5.7% chance we will see two fibers, and less than a 1% chance we will see three or more fibers.



Let’s say that in our analysis of this sample we saw 1 fiber in 25 grid openings.  Based on this, we would estimate the concentration to be:



	C  =  Nobs ∙ EFA / (GO ∙ Ago ∙ Vt · 1000)

	    = 1 fiber ∙ 360 mm2 / (25 GO ∙ 0.01 mm2/GO ∙ 200 L· 1,000 cc/L) = 0.0072 f/cc



Note that this value is substantially higher than the true concentration (0.0030 f/cc).  Likewise, if we had seen a count of zero (a 66.2% chance), we would have said the concentration is zero (substantially lower than the true value).  Based on this, it is pretty clear that, if we are wise, we will never confuse any one measured (observed) estimate of concentration with “truth”.  The true concentration might be either higher or lower than what we saw.  The following section discusses how to quantify the uncertainty around any particular concentration estimate, and how to control this uncertainty within reasonable bounds.







4.0 CHARACTERIZING AND LIMITING UNCERTAINTY IN INDIVIDUAL SAMPLES



4.1.1	Quantification of Uncertainty in Individual Samples



Granted that there is uncertainty around the concentration estimate for a sample from any single analysis, how can we describe this uncertainty?  Because the Poisson distribution is inherently discontinuous (i.e., probability values exist only for discrete integer values), there is no equation that gives the uncertainty distribution exactly.  However, the uncertainty distribution is bounded between the following two curves (Nelson 1982):



	Lower bound on concentration ~ CHISQ(2∙Nobs) / (2∙ Va) 

	Upper bound on concentration ~ CHISQ(2∙Nobs+2) / (2∙Va)



where CHISQ(ν) = the Chi-square distribution with ν degrees of freedom.  Figure 1 shows these two bounding distributions for the case where Nobs is 4 and Va is 100 cc.  In this case, the best estimate of concentration is:



	Cbest est = Nobs / Va = (4 fibers) / (100 cc) = 0.040 f/cc



As shown in Figure 1, the Poisson uncertainty range about this estimate extends from about 0.01 f/cc to about 0.1 f/cc.  Usually, the upper percentiles of the uncertainty distribution are selected from the upper bound curve, while lower percentiles are selected from the lower bound curve.  That is:

 

	5% Lower Bound on concentration = CHIINV(0.05, 2∙Nobs) / (2∙Va)           [Eqn. 6]

	95% Upper Bound on concentration = CHIINV(0.95, 2∙Nobs+2) / (2∙Va)     [Eqn. 7]



where CHIINV is the inverse chi-squared distribution function[footnoteRef:2].   In this example, these values are: [2:  The CHIINV function is available in Excel.  The syntax is = CHIINV(1-α,υ), where α is the probability value of interest, and υ is the degrees of freedom (either 2Nobs or 2Nobs+2)  ] 




	5% Lower Bound on concentration = 0.012 f/cc

	95% Upper Bound on concentration = 0.092 f/cc



That is, there is less than a 5% chance that the true concentration is lower than 0.012 f/cc, and there is less than a 5% chance that the true concentration is higher than 0.092 f/cc. 



4.1.2	Controlling the Magnitude of the Uncertainty



Table 1 shows the conservative lower and upper bounds for a range of observed count values (Nobs), and Figure 2 plots the ratio of the 5th and 95th uncertainty bounds to Nobs as a function of Nobs.  



As shown, the uncertainty is large for small Nobs, and decreases as Nobs increases.  For example, consider the case where we analyzed a volume of 100 cc (Va = 100), and observed 1 fiber.  Our best estimate of concentration is Cbest est = 1 fiber /100 cc = 0.010 f/cc.  From Table 1, we see that the 90% confidence limit around a count of 1 fiber is from 0.051 to 4.74, so the 90% confidence interval on the true concentration in our sample is from 0.00051 to 0.0474 f/cc (a range width of 0.047 f/cc).



Now consider the case where we analyzed the same sample, but we counted 10-times more grid openings (Va = 1000 cc).  For ease of comparison, assume we observed 10 fibers. Our best estimate of concentration is the same as before:  Cbest est = 10 fibers /1000 cc = 0.010 f/cc.  However, from Table 1, we see that the 90% confidence limit around a count of 10 is from 5.4 to 17.0, so the true concentration in our sample could range from 0.005 to 0.017 f/cc, a range width almost 4-times narrower than before (0.012 vs. 0.047 f/cc).



So, the general principle is clear:  in order to limit the uncertainty in the concentration estimate for any individual sample, ensure that the analysis yields an observed count of at least 5-10 fibers, with counts of 20-25 fibers or more being preferable.  The higher the fiber count, the lower the uncertainty.  However, once a count of 20-25 fibers has been achieved, there is relatively little decrease in uncertainty as Nobs increases, so analyzing a sample to a count higher than about 25 fibers is usually not necessary.  Consequently, it is often reasonable to set an analytical “stopping rule” of 20 or 25 fibers to help ensure TEM analysts do not spend undue time on samples with high fiber counts. 



4.1.3	Strategy Considerations



So, is it really necessary to analyze every sample to a count of 20-25 fibers?  This could be a real problem for samples with low concentration.  For example, consider this case:



Concentration = 0.00005 f/cc

Volume filtered = 1000 L (1E+06 cc)

EFA = 360 mm2

Ago = 0.01 mm2



Based on this, the number of grid openings needed to achieve a count of 20 fibers would be 14,400, which is about 40% of the entire filter (!).  Clearly, that is beyond the scope of what is feasible in most cases, even if the analysis were performed at low magnification.  



Fortunately, the answer to the question (“Do I really need to count every sample to 20-25 fibers?”) is no.  Counting a sample to this number of fibers is really only needed when the concentration is near a risk management threshold.  For samples with concentrations that are well below (or well above) a level of concern, low counts may be acceptable, just so long as the uncertainty bounds around the estimate of concentration do not approach the level of concern.



4.1.4	Planning a Sampling and Analysis Effort



Based on the principle that high confidence is not needed for all samples, but mainly for samples that are near a decision threshold, the following sequence of steps describes how to plan a sampling and analysis effort.



1. Calculate the concentration of asbestos in air that is of concern (this is usually referred to as the Risk-Based Concentration or RBC).  For cancer risk, the basic equation is (EPA 2008):



		RBC = Target Risk / (TWF ∙ IURa,d)



Usually the target cancer risk is selected to be somewhat lower than what is expected to be the final risk management decision rule.  For example, if it were anticipated that the need for cleanup would be based on a 1E-04 cancer risk threshold, then the target risk for planning sampling and analysis might be set to 1E-05.  The values of TWF and IURa,d are determined by the scenario of concern (EPA 2008).  Default RBC values for a variety of exposure scenarios are provided in EPA (2011).



2. Specify a target count (Ntarget).  This is the average number of fibers that you want to observe (target Nobs) in a sample whose true concentration is equal to the RBC.  As noted above, ideally this would be at least 5-10 and possibly up to 20-25.  However, as discussed below, in some cases it may be necessary to restrict the target count to a smaller value (e.g., 3-5) to achieve an implementable plan.



3. Specify the target analytical sensitivity as follows:



		S (cc-1) = RBC (f/cc) / Ntarget (f)



4. Specify the analytical stopping rules.  These usually take the following form:



a) Count a minimum of four grid openings, two from each of two different grids.  This is needed to allow for a test of uneven filter loading.

b) After completing a minimum of four grid openings, continue counting until one of the following is achieved:

i. The target sensitivity is reached.  This helps ensure that any sample that has a true concentration equal to or above the RBC will have a high probability of being detected and will be quantified with good accuracy.

ii. A total of “X” fibers are counted.  For example, X might be set to 25.  This helps ensure that sample with high concentration are not analyzed more than needed.  For example, if it were necessary to count 85 grid openings to achieve the target sensitivity, but a total of 28 fibers were observed in the first 10 grid openings, then further analysis of the remaining 75 grid openings is not needed to reliably quantify the concentration in that sample.

iii. A total of “Y” grid opening are analyzed.  This stopping rule is usually added to help prevent excessive time and cost impacts on samples that require indirect preparation, or that have very low volumes.  For example, if 85 grid openings were required to achieve the target sensitivity for a direct preparation sample, but a sample had to be prepared indirectly with an F factor of 0.1, then 850 grid openings would be required.  This might exceed the time and cost constraints for the analysis, so an upper limit might be set to 400 grid openings (for example).  The actual value of Y will be a risk management decision. 



5. Perform a reality check.  This should begin with a calculation of the number of grid openings needed to achieve the target sensitivity using this equation:







In general, the time and cost of each analysis is determined mainly by the number of grid openings required.  For high magnification analyses, if the grid opening requirement is in the 10-50 range, then the sample design is likely to be implementable at a reasonable cost.  For low magnification analyses, because of the lower cost and time per grid opening, grid opening counts of 100-400 (or even more) may be reasonable (depending on laboratory).



If the number of GOs required exceeds reasonable time and cost limitations, then it may be necessary to reassess the sampling and analysis design by increasing pump flow rate (Q, L/min) and/or sampling time (t, min) in order to increase the value of V, since V = Q ∙ t.  In general, it is helpful to use flow rates and sampling times that are both as large as possible, since the larger the value of V, the lower the number of grid opening required to achieve analytical goals.  In addition, long sampling times help ensure the sample is representative of long-term average concentrations (rather than reflecting short term peaks or lows).  However, once a filter is overloaded with particulate matter, drawing additional air through the filter does not result in a decrease in the number of grid openings required, since any increase in volume is offset by the need to dilute the sample and prepare a secondary filter that is not overloaded.  Consequently, in the ideal case, the values of Q and t are selected to approach but not exceed filter loading limits.



If V can not be increased, then it may be necessary to decrease the target count, seeking to go no lower than about 3.  If all else fails, then it may be necessary to increase the analytical target risk (e.g., from 1E-05 to 5E-05).  However, the value should not be increased beyond what is expected to be the final risk management decision threshold (e.g., 1E-04). 



5.0 DETECT vs NON-DETECT



Because the upper 95% confidence bound on a count of zero is 2.996 (see Table 1), some authors assert that any sample with fewer than 3 observed fibers can not be distinguished from zero, and rank samples with 0, 1 or 2 fibers as non-detects.  This is not correct.  



Begin by considering the case where unused filters (i.e., filter blanks) have zero countable asbestos fibers on them.  That is, no matter how many grid opening we count for blank filters, we will never see even one asbestos fiber.  In this case, if we see one fiber in a field sample (a filter that has had air passed through it), the fiber must be derived from the air, and the sample is a detect.



What if blank filters have a non-zero number of fibers on them?  This situation is addressed in ASTM 6620-00.  In this approach, a sample is declared to be a detect if the number of fibers observed in the analysis of the field sample is higher than the high end of the number of fibers that might be observed in any random examination of an equal area of a blank filter.  Appendix A provides step-by-step guidance on how to perform this assessment.

 

However, most modern filters are manufactured in a way such that asbestos fibers are quite rare when analysis is by TEM.  Based on this, it is likely that any field sample with one or more observed asbestos structures is a detect.



Reporting Results



As discussed above, assuming that filters used in sampling have a low density of countable asbestos fibers, then the distinction between detect and non-detect is usually very simple:  a count of zero is a non-detect, and a count of 1 or more is a detect.  In cases where filters have a non-trivial background loading, refer to Appendix A for distinguishing detects from non-detects.



With regard to reporting a concentration value for each sample (both detects and non-detects), it is important to recognize that that reporting only concentration values is unacceptable, since uncertainty around individual measures or groups of measures can not be evaluated without the raw counts and volumes (sensitivities).  For example, a concentration value of 0.01 f/cc might be based on 1 fiber in 100 cc analyzed (wide uncertainty), or on 50 fibers in 5000 cc analyzed (narrow uncertainty).  Likewise, a count of zero out of 100 cc has a much different meaning than a count of zero out of 5000 cc.  This is why all laboratory analytical reports for asbestos samples must always include both count and sensitivity (volume analyzed) for each sample.



With regard to reporting concentration, the best strategy is to report three concentration values for each sample:  the best estimate, the lower bound on the best estimate, and the upper bound on the best estimate.  These three values are derived from the data (Nobs, Va or S) using Equations 6, 7, and 8 (above).



6.0	DETECTION LIMIT



So, now that we know how to classify individual samples as either “detect” or “non-detect”, how can we describe the “detection limit” of an analysis?  



First, let’s review the concept of detection limit.  The normal definition of detection limit is a concentration that can reliably be distinguished from background with high confidence.  For example, 40 CFR Part 136 (“Guidelines Establishing Test Procedures for Analysis of Pollutants”) defines the method detection limit as "the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero". 



Recalling that, in most cases, observation of a single fiber ranks a sample as a detect (see Section 5 and Appendix A), and recognizing that a single fiber might be observed in any sample whose true concentration is greater than zero, then it is clear that there is no inherent “detection limit” in asbestos analysis.  However, the probability of observing one or more fibers clearly does depend on the concentration.



Let’s consider an example.  Assume we filter 200 L (200,000 cc) of air through a filter, and we analyze 10 grid openings (a total of 0.10 mm2 of filter).  The red line in Figure 3 shows the probability of observing one or more fibers (i.e., of detecting the presence of asbestos) in our analysis as a function of the concentration in the air.  As seen, we stand very little chance of detecting even one fiber if the concentration is lower than about 0.001 f/cc, while we are nearly certain we will detect one or more fibers if the concentration is 0.1 f/cc or higher.  In the range between 0.001 and 0.1 f/cc (a 100-fold range), the probability of detection increases from low to high as concentration increases.



So, what is the “detection limit” in this example?   To answer that, we have to specify some probability of detecting asbestos if it is present.  For example, if we decide to define the detection limit as a concentration that will be detected 95% of the time, the detection limit is about 0.054 f/cc.  Note that identifying 0.054 f/cc as the “detection limit” does not mean we can not detect a sample whose concentration is lower than 0.054 f/cc.   Indeed, we can detect samples up to 50-fold lower, although the probability of detection decreases as concentration decreases below the detection limit. 



Now, let’s re-analyze the sample, except this time we count 100 grid openings rather than 10, as shown by the blue line in Figure 3.  By increasing the number of grid opening analyzed (i.e., by increasing the volume of air analyzed) by a factor of 10, the detection frequency curve shifts left by a factor of 10.  Now we can nearly always detect a concentration of 0.01 f/cc, and we may be able to occasionally detect samples as low as 0.0001 f/cc.  The detection limit (95% detection probability) for this analytical strategy is 0.0054 f/cc (10-fold lower than before).  This emphasizes the key point:  there is no inherent detection limit in asbestos analysis.  We can (at least in concept) achieve any detection limit of our choice, simply by analyzing more and more grid openings (more and more volume).

	 

One final point with regard to detection limit:  because of its name, the analytical sensitivity (S) of an asbestos analysis is sometimes supposed to be the analytical detection limit for the analysis.  This is true only if we choose to define the detection limit as a concentration that will be detected 63% of the time[footnoteRef:3].  If that is accepted as the definition, then the detection limit is equal to the sensitivity multiplied by one fiber: [3:  When the true concentration of a sample is equal to 1 fiber times the analytical sensitivity, the expected count (λ) is 1.0, and the Poisson probability of detecting one or more fibers when λ = 1.0 is 63%.] 




	DL63% = 1 f ∙ S (cc-1)



As above, analytical sensitivity depends on the number of grid openings analyzed, so S is not an inherent constant, but is determined by the analytical stopping rules.



7.0	DEALING WITH MULTIPLE SAMPLES



7.1	Overview



All of the text above has focused on dealing with individual samples.  However, human exposure and health risk can almost never be reliably characterized based on a single sample.  Rather, the concentration of asbestos in air that a person is exposed to is likely to vary from place to place and from time to time, and risk-management decisions are generally based on the risk associated with the long-term average exposure concentration, not the risk from any one specific exposure event.



In order to estimate the long-term average exposure concentration, it is necessary to collect multiple samples that provide measures of concentration that are realistic and representative over space and time.  Ideally, the average concentration of these multiple samples would be equal to the true long-term average exposure concentration.  However, due to random variation in both sampling and analysis, the average across multiple samples might be either higher or lower than the true long-term average.  For this reason, EPA generally recommends that exposure and risk be calculated using the 95% upper confidence limit (UCL) on the sample mean rather than the sample mean itself.  This helps ensure that there is no more than a 5% chance that the actual exposure concentration will be underestimated, which in turn helps limit the probability of making a false negative decision error (declaring a site safe when it is in fact not safe).



To help with this process, EPA has developed a software application (ProUCL) to assist with the calculation of 95UCL values (EPA 2007).  However, the equations and functions in ProUCL are not designed for asbestos data sets and application of ProUCL to asbestos data sets is not recommended (EPA 2008).  Because of this, EPA (2008) recommends that, until a method is developed for estimation of the UCL of an asbestos data set, risks from exposure to asbestos be calculated based on the best estimate of the mean concentration, rather than some ad hoc “upper bound” statistic, recognizing that the sample mean may be either higher or lower than the true long-term average exposure concentration. 



7.2	Estimating the Mean of an Asbestos Data Set



In this regard, it is important to review the correct way to calculate the mean of an asbestos data set.  By analogy with the process that is usually followed for other (non-asbestos) chemicals, some people assume that when the mean of a data set is calculated, all “non-detects” (i.e., samples with a count of zero) should be assigned a surrogate value greater than zero to account for the fact that the true concentration in the sample is probably not a true zero.  While it is correct that the true concentration of a sample with zero counts may be greater than zero, it is NOT CORRECT to assign some surrogate value (e.g., S or ½ S) to non-detects when computing the best estimate of the sample mean.  Rather, all non-detects must be evaluated using a concentration of zero (Cameron and Pravin 2007, Haas et al. 1999, EPA 1999, EPA 2008).  



If any value greater than zero is assigned to these samples, this will cause the estimate of the sample mean to be biased high.  This is illustrated in Figure 4.  In this example (generated using Monte Carlo simulation), a set of 10 samples is drawn from a lognormal distribution and analyzed with a range of alternative analytical sensitivities that yield detection frequencies ranging from about 18% up to nearly 90%.  For each data set, the sample mean is divided by the true mean to generate a ratio.  The upper panel shows the average and range (5th to 95th percentile) of the ratio values that are obtained when no adjustment to non-detects is performed.  As seen, regardless to the detection frequency, the expected value of the ratio is 1.0 (i.e., the expected mean is equal to the true mean).  The lower panel shows what happens when non-detects are assigned a non-zero surrogate value.  In this example, the surrogate assigned is 0.5 times the analytical sensitivity.  As seen, for cases where a high fraction of the samples are non-detects, a strong and substantial bias is introduced.  As expected, the magnitude of the bias decreases as the fraction of non-detects decreases.



So, the principle is clear:  when calculating the mean of an asbestos data set, do not perform any adjustment to samples with a count of zero.  These are valid samples and must be utilized as such, without adjustment.



A special case arises when all of the samples in a data set are non-detects.  In this case, the best estimate of the mean is zero, even though it is likely the true concentration is some value greater than zero.  Consequently, there is a general preference for reporting the mean of such an “all-zero” data set not as zero but as the upper bound on the true mean concentration.  The following section discusses how uncertainty bounds around the mean may be established for asbestos data sets, including “all zero” data sets.



7.3	Pooling vs. Averaging



An alternative strategy for combining data from multiple samples is pooling.  In this approach, data are combined by summing all of the counts observed, and dividing by the sum of the volumes analyzed:



	



In general, pooling of environmental samples is not appropriate unless all of the samples being combined are replicate samples collected at the same time and place.  If different samples in a data set have true concentrations that vary from each other, then pooling will generally not provide a reliable estimate of the true between-sample mean.



For example, assume one sample of air is collected during each of three independent activity-based sampling (ABS) events.  These events occurred at the same location, but at different times (different seasons of the year).  A priori, it is assumed that the true concentration in each sample may differ between events due to differences in the soil and weather conditions.  Consequently, the best estimate of the true long-term average concentration at this location is the average of the three samples, not the pooled value.  



The following table presents some hypothetical data, and compares the results of pooling to averaging. 
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As seen, in this case the pooled value is lower than the average.  This is because pooling results in the volume-weighted mean rather than the sample mean, giving the largest influence to the samples with the largest volume analyzed.  In this example, the sample with the largest volume (sample 3) has the lowest concentration, and the sample with the highest concentration (sample 1) has the lowest volume.  Consequently, the pooled mean is biased low.



Note that, in the special case of a data set where all of the volumes analyzed are the same, then pooling and averaging yields the same mean value.



One of the perceived advantages of pooling is that the uncertainty around the pooled value may be estimated as described in Section 4.1.1.  However, this estimate of uncertainty will not be correct and will substantially underestimate the true uncertainty unless all of the samples are collected at the same time and place, and are viewed as being replicate samples.  In cases where the samples are believed to have authentic variations in true concentrations, then the uncertainty around the mean should be estimated as described below.



7.4	Estimating the UCL of an Asbestos Data Set using CB-UCL



Since the time the Asbestos Framework document (EPA 2008) was developed, EPA has sponsored the development of a new computer application for estimating the UCL of an asbestos data set (Brattin, Barry, and Foster, in press).  The application implements an analysis strategy that is generally similar to that used by ProUCL.  That is, the application fits a number of alternative models to the data and determines the model that is most consistent with the data.  Then, the UCL based on that model is recommended as the preferred value.  However, all model-fitting procedures and UCL calculations include the effect of random Poisson counting error.  For this reason, the application is called CB-UCL (Count-Based UCL).  In brief, the main components of the CB-UCL application are described below.



Data Input



The data set that is provided to the application consists of a set of N paired fiber counts and volumes, {Yk ,Vk} for k = 1,2,…,N.  As noted above, counts of zero are valid and are entered as such, and Vk is the volume of air that passed through the area of filter examined.

 

Module 1:  Evaluate Data Adequacy



In Module 1, the data set is evaluated to determine if the data are adequate to support fitting alternative distributions to the data.  Although the choice of what constitutes an “adequate” data set is a matter of judgment, the criteria for proceeding to a data-fitting phase have been set to the following:



· Minimum data set size = 5

· Minimum number of samples with non-zero fiber counts = 3



If both of these criteria are satisfied, the data are then processed through implementation of Module 2.  If either or both criteria are not satisfied, Module 3 is implemented.



Module 2:  Data Fitting and UCL Estimation for Adequate Data Sets



Given a data set that is adequate, the data are fit to four alternative parametric distributions, as follows:



· Poisson

· Poisson-Exponential

· Poisson-Gamma

· Poisson-Lognormal



These four models allow the application to deal with a wide range of shapes and skewness in the data.  For each model, the UCL is calculated based on the best fit parameters.  Given the UCL values for each model, the preferred model fit and associated UCL is identified based on Akaike’s Information Criterion (AIC).



Module 3:  Evaluation of “Weak” Data Sets



If the data set is not adequate to support meaningful analysis using Module 2, the data are evaluated using Module 3.  This even includes data sets that are all non-detect.



In order to be conservative, this module assumes the underlying distribution is not more strongly skewed than a lognormal distribution, and that the geometric standard deviation (GSD) of the assumed lognormal distribution is not larger than some specified value (GSDmax).  Given these assumptions, Module 3 finds the highest value of the log-mean that has a no more than a 5% probability of generating a data set with more counts that the number observed in the data set being evaluated.  This is referred to as the “conservative upper bound” (CUB).  If the assumptions used to calculate the CUB are conservative, then the UCL is less than the CUB.  



In cases where the CUB for a weak data set is at or above a level of human health concern, it may be helpful to either collect more samples or to extend the analysis of existing samples to achieve a lower analytical sensitivity (a large value of Va) in order to increase the accuracy of the UCL estimate.  In cases where the CUB is below a level of human health concern, further effort to improve on the CUB estimate may not be required. 





8.0	ESTIMATING THE NUMBER OF SAMPLES REQUIRED



One of the main reasons for planning a sampling and analysis effort is to ensure that the number of samples collected will be adequate to support reliable risk management decision-making.  In this regard, there are two types of decision errors that may occur:



· A false negative decision error occurs when an exposure area is declared to be acceptable when in fact it is not acceptable

· A false positive decision error occurs when an exposure area is declared to be unacceptable” when in fact it is acceptable



When risks are based on the 95UCL or CUB of the sample mean, this strategy automatically limits the probability of a false negative decision error to 5% or less (regardless of the quality of the data set).  However, the weaker the data set, the greater the probability of making a false positive decision error.  Because a false positive decision error usually results in the unnecessary expenditure of resources, EPA usually seeks to collect enough samples to limit the probability of a false positive decision error to within some specified limit.



Recall that a false positive decision error can only occur when the true long-term mean is lower than the risk-based concentration (RBC).  In this case, the “correct” decision is that risk is acceptable, but a false positive decision error will occur when the UCL (or CUB) is higher than the RBC.  The probability of making a false positive decision error depends on four factors:



· The difference between the true mean and the RBC.  The probability of a false positive decision error increases as the true mean approaches the RBC.

· Sample size.   The probability of false positive error decreases as sample size increases

· Sampling variability.  The probability of false positive error increases as inherent between-sample variation (variance) increases 

· Average count (λ).  The probability of false positive error decreases as average asbestos fiber count increases



The first three factors apply to all data collection efforts, including both asbestos and non-asbestos analytes.  The forth factor applies only in the case of asbestos analysis.  EPA has developed standard methods for estimating the number of samples required based on the first three factors (e.g., EPA 2006), but has not developed guidance that incorporates the effects of the forth factor.



Figure 5 illustrates the effect of average count on the expected variance of an asbestos data set compared to a data set with the same underlying variability (described in terms of the coefficient of variation = stdev /mean).  As seen, when the average count is about 20 or higher, the variance in the asbestos data set is almost the same as if there were no Poisson variability.  As average count decreases, the effect of Poisson variation begins to become more important.  The effects of Poisson variation are most apparent when the underlying sampling variation is small (e.g., CV = 0.5) and decreases as sampling variability increases.  This is because the relative variability contributed by Poisson error becomes small in comparison to the sampling variability.



Based on these relationships, the following approach is suggested for estimating the number of samples needed to achieve data quality objectives and limit the probability of false positive decision error to within target limits: 



1. Using estimated or assumed values for the mean and standard deviation of the true underlying distribution of concentration values, calculate the target sample size using standard statistical methods, ignoring the effect of Poisson counting variability.  In general, the minimum sample size needed to provide reasonable limits on uncertainty around the mean is 6-8, and this increases as the between-sample variability increases.

2. Estimate the average fiber count that will be obtained in the analysis of the samples.  This value is simply equal to the estimated or assumed average concentration multiplied by the average volume of air that will be examined under the microscope (= 1/S).

3. Use Figure 5 to estimate how much higher the variance will be in the asbestos data set than in the underlying distribution.

4. Approximate the number of asbestos samples needed as follows:



		 



Example:  Assume that we are planning to collect a data set of asbestos air samples to evaluate a specified exposure scenario.  Based on preliminary data, we think we are dealing with a sampling distribution that has a coefficient of variation of about 1.  Based on our DQOs, and in the absence of Poisson measurement error, we estimate that we will need about 10 samples to achieve adequate limits on the risk of false positive decision error.  We plan on analyzing our samples with an analytical sensitivity that we expect will yield an average count of about 1 fiber per sample.  Based on a CV of 1 and an average count of 1, we check Figure 5 and see the variance in our data set will be about twice as high as it would be without the effect of Poisson variation.  Consequently, we estimate that we need twice the number of samples (20) to achieve our DQOs.   



9.0	TAKE-HOME MESSAGES



Recognizing that the text above has presented a lot of numbers and a lot of statistical analyses that can be pretty mind-numbing, here are the key concepts that all risk assessors and risk managers should understand when working at asbestos sites:



1. Because of how asbestos is measured (by counting fibers under a microscope), the analytical measurement error for asbestos samples is usually higher than for most other analytes.  This is the main reason that asbestos sampling and analysis must be planned with special care.

2. The uncertainty around any specific measurement of asbestos concentration is easy to quantify.  The uncertainty is highest when fiber counts are low (e.g., 0-5), and diminishes as fiber counts increase.  Once there are 20-25 fibers observed, counting more fibers results in only a small decease in uncertainty.

3. Because risk calculations are usually based on PCME fibers (fibers more than 5 um in length), counting only PCME fibers (as opposed to all fibers) at relatively low magnification is often a good way to limit the time and cost of analyses, and usually results in a higher number of PCME fibers observed (hence decreasing uncertainty in exposure and risk calculations).

4. If samples are collected on filters that have a negligible occurrence of countable “background” asbestos structures, then the occurrence of even one asbestos fiber ranks the sample as a detect.  This is likely to be the case with most modern-day filters analyzed by TEM.

5. Laboratory reports of asbestos analyses should include the raw data (counts, analytical sensitivity) for each sample, along with three estimates of the concentration:  the 5% lower confidence bound, the best estimate, and the 95% upper bound.

6. The “detection limit” in asbestos analysis is a not a sharp cutoff value.  Rather, the ability of an analysis to detect asbestos (i.e., see one or more fibers) spans a relatively wide range (about two orders of magnitude) of concentration values, with a high probability of detection at the high end and a low probability of detection at the low end.  Consequently, there is no inherent value analogous to the “reporting limit” in traditional wet chemistry.  However, a detection limit may be specified if the concept of “detection limit” is modified to describe the probability of observing one or more fibers in an analysis. 

7. The range of concentrations that can be detected in an analysis is not fixed, but depends on the number of grid openings evaluated.  The more grid opening evaluated, the greater the ability of the analysis to detect the presence of asbestos.  In concept, nearly any target detection limit may be achieved by counting a large enough number of grid openings, but this can be expensive and slow.

8. Human health risk from inhalation exposure to asbestos is related to the long-term average exposure concentration in air, so it is necessary to base risk evaluations on multiple air samples that are representative of exposure levels over time and space.  The best-estimate of the long term average for some specified scenario is equal to the average of the samples that represent that scenario.  Note that if the data set contains non-detects (count = 0), the mean must be calculated using a concentration of zero for these samples, not some surrogate value.

9. The UCL of the mean of an asbestos data set that has high fiber counts (> 20) for all samples may be estimated using standard methods (e.g., ProUCL).  For data sets that contain at least some samples with zero or low fiber counts, the UCL of the mean should be evaluated using statistical methods that account for the effect of random Poisson counting error (e.g., CB-UCL).

10. The number of samples needed to limit decision errors is difficult to estimate exactly, but may be approximated by finding the number of samples that would be needed if Poisson error were absent, and then increasing the sample number in proportion to the effect that Poisson variability has on the overall variance of the data set (Figure 5).  

11. Failure to collect sufficient samples will usually result in relatively wide uncertainty around the mean.  In cases where the UCL or CUB exceeds the risk-based concentration, this may result in a relatively high probability of a false positive decision error, which is not desirable.
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TABLE 1

POISSON CONFIDENCE BOUNDS ON COUNTS
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FIGURE 1

UNCERTAINTY AROUND AN OBSERVED CONCENTRATION
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FIGURE 2

  UNCERTAINTY AS A FUNCTION OF COUNT
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FIGURE 3

PROBABILITY OF DETECTION AS A FUNCTION OF CONCENTRATION
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FIGURE 4

BIAS INTRODUCED BY USING SURROGATE VALUES FOR NON-DETECTS
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FIGURE 5

EFFECT OF POISSON ERROR ON THE VARIABILITY (VARIANCE)

IN ASBESTOS DATASETS
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APPENDIX A



ACCOUNTING FOR FILTERS WITH NON-TRIVAL BACKGROUND

OF COUNTABLE ASBESTOS FIBERS



Distinguishing Detects from Non-Detects



What if blank filters have a non-zero number of fibers on them?  This situation is addressed in ASTM 6620-00.  In this approach, a sample is declared to be a detect if the number of fibers observed in the analysis of the field sample is higher than the high end of the number of fibers that might be observed in any random examination of an equal area of a blank filter.  This determination is performed as follows:



Step 1.  Assemble the results for all relevant blank samples and compute the value of λ0, which is the average number of countable asbestos fibers observed per mm2 in filter blanks:



	λ0 =  Nb / Ab



where:



λ0  = background loading (f/mm2)

Nb = Total number of countable fibers observed in the analysis of filter blanks

Ab = Total area (mm2) of filter blanks evaluated (= total GOs * area of one GO)



Step 2.  Compute μ, which is the average number (count) of background asbestos fibers that would be expected during examination of an area As (mm2) from a field sample:



	μ = λ0 ∙ As



Note that the value of As (and hence the expected count μ) may vary between field samples, depending on the number of grid openings counted and the area of the grid openings (As = number of GO’s counted in the field sample ∙ area of one GO).



Step 3.  Based on the average count (μ) of background fibers from Step 2, use the Poisson distribution to find x0, which is the count of background fibers that would be observed in no more than 5% of a set of random observations of area As in field blanks.  Table A-1 (taken from ASTM 6620-00) shows the value of x0 for average background counts (μ) ranging from zero up to about 6 fibers.



Step 4:  Compare the observed number (Nobs) of counts from area As of the field sample to x0.  If Nobs > x0, conclude that the number of fibers observed is higher than background and rank the sample as a detect.  If Nobs ≤ x0, then conclude that the observed number of fibers could be attributable to background, and rank the sample as a non-detect.  Note that if the average expected count of background fibers (μ) is small (≤ 0.05), then x0 is zero and any field sample with an observed count of one or more fibers should be ranked as a detect.



EXAMPLE:



Step 1:  Assume that we have analyzed 10 grid openings in each of 100 filter blanks, and we have observed a total of 4 fibers.  Based on this:



	Nb = 4 fibers

Ab = 10 GO/sample * 100 samples ∙ 0.01 mm2/GO = 10 mm2

λ0 =  Nb / Ab = 4 fibers / 10 mm2 = 0.04 f/mm2



Step 2:  Assume we have collected a field sample for which we have analyzed a total of 50 grid openings.  Based on this, 



	As = 50 GOs ∙ 0.01 mm2/GO = 0.5 mm2

	μ = λ0 * As = 0.04 f/mm2 ∙ 0.5 mm2 = 0.02 fibers



Steps 3&4:  Using Table 2, we can see that x0 = 0 for all values of μ < 0.05, so x0 = 0 for our analysis.  That is, there is less than a 5% chance we will see a background fiber in any random analysis of 50 grid openings.  Therefore, if we see one or more fibers in our analysis of this field sample, we will rank the sample as a detect. 



In the past, the occurrence of countable fibers on blank filters was high enough that it could not be ignored.  However, modern filters are manufactured in a way such that asbestos fibers are quite rare when analysis is by TEM, since TEM can distinguish asbestos from other types of fibers that might be present.  Based on this, it is likely the value of x0 will be zero in most cases (unless a very large area of filter is examined).  Consequently, any field sample with one or more observed asbestos structures is likely to be a detect.



If the expected average number of counts expected to arise from background (µ) is small ( < 0.05), the calculation of these three values can simply ignore the background contribution and utilize Equations 6, 7 and 8 without adjustment.  This is expected to be the situation in nearly all cases where analyses are performed using modern filters with low background counts.





Reporting Results



In the rare situation where the contribution of background to observed counts is not small, then the data user may wish to correct the observed counts for the background contribution.  Conceptually, this is done as follows:



	Nadj = Nobs – b



where b = counts contributed by background.  The problem is that, for any given sample and analysis, the value of b is not known.  Rather, b is a random variable that may take on any integer value between zero and x0.  



The simplest method to perform the background correction is to assume b = x0.  This ensures that all counts that are assigned to the sample have a high probability (≥ 95%) or having originated from the air and not from background.  However, this approach will tend to underestimate the true concentration in air.  An unbiased way to make the adjustment is to round the value of µ down to the nearest whole number below µ, and use this as the best estimate of b.  This rounded value of µ is equal to the mode (most likely value) of the background contribution to total counts (Evans, Hastings, and Peacock 1993). 



Example:



Assume that the expected count from background (µ) is 3.6 fibers.  From Table 2, we see that x0 = 7.  In our analysis, we observed a count of 10 fibers.  Because Nobs is greater than x0, we rank this sample as a detect.  However, our observed count of 10 almost certainly includes some fibers arising from background.  If we assumed b = x0, we would say that (at least) 3 fibers were due to air and that up to 7 could have arisen from background.  However, the most likely contribution of background is 3 fibers (3.6 rounded down to the nearest integer), so the most likely contribution from air is 7 fibers.



In general, adjusting Nobs by the mode of μ is recommended as the most appropriate and least biased way to make background corrections, when needed:



	Nadj = Nobs - modeμ



Then, the best estimate, lower bound and upper bound on concentration may be calculated using Equations 6, 7, and 8, except that Nadj is used in place of Nobs.



For samples that are declared to be non-detect (Nobs ≤ x0), the value of Nadj may simply be assigned a value of zero.  Note, however, that this approach will tend to underestimate the actual concentration in non-detect samples where Nobs > 0, since some samples are designated as non-detects even though there is a significant probability that some of the observed fibers were derived from the sample.  In order to minimize this bias, it would be necessary to change the definition of detect from a sample where Nobs > x0 to a sample where Nobs > modeμ.  However, this strategy could result in the designation of some samples as detects even though all of the observed fibers were derived from background.








TABLE A-1

VALUE OF x0 FOR VARIOUS VALUES OF μ
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			Notes:

µ = expected count of fibers due to background = λ0 * area examined

x0 = the highest count than could reasonably arise from background

Source:  ASTM 6620-00

A-5
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